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We examine the motion of a liquid drop in a steady-state flow, when the ratio of the 
dynamic viscosity of the external flow to the viscosity of the internal flow is small. The 
internal circulation is determined on the basis of an established bilateral evaluation of 
the energy dissipation within the drop. The relationship between the internal circulation 
and the deformation of the drop is established from the equation for the balance of the 
external and internal pressure forces and the forces of surface tension. We have derived 
equations for the vibrations of the drop falling in the gas, and we have solved the stability 
problem. The theoretical value for the critical size of the drop is in agreement with ex- 
perimental data on droplet destruction. 

i. Expansion Over a Small Viscosity Ratio. The first-approximation equations. Let 
us examine the axisymmetric streamlining of a liquid drop. The liquid inside and outside 
the drop is assumed to be viscous and incompressible. We will denote the velocity vector~ 
outside of the channel and ~+ and v+ will denote the dynamic and kinematic viscosities; 
p+ represents the density of the liquid outside of the drop. The corresponding character- 
istics of motion within the drop will be identified with the subscript minus sign. 

Inside and outside of the drop the velocity fields are subject to the Navier-Stokes 
equations. At the drop surface 8V four conditions are specified: the equality to zero 
for the normal velocities Vn, the continuity of the tangential velocities vT, and for the 
tangential stress o~; at infinity the condition v+-+v~ is fulfilled. We assume the shape 
of the drop to be known. To determine the shape of the drop we resort, in Sec. 6, to the 
boundary condition for normal stresses. 

For droplets moving in a gas we generally satisfy the condition D+/D_ << 1 in which 
v_ is considerably smaller than v~. With a large Reynolds number Re+ the external flow 
near the boundary exhibits a structure characteristic for the boundary-layer theory ap- 
plicable to a solid surface. The boundary-layer thickness 5+ = ~//Re+ (~ is the radius 
of a sphere equivalent in volume to that of the droplet). 

The characteristic value of o+z - o is inversely proportional to 6+: 

o = ~+v~16+ = ~+v~]/R-ee+ll, Re+ = Iv~fv+. (i.i) 

The tangential stress o+~ generates a vortex flow inside the drop, the velocity of 
this flow given by v_ - o~/~_, from which, by means of (i.i), we have v_ ~ Rv~, R = (D+/ 
~_)/Re+. Assuming the parameter R to be small, we will look for the solution of the boun- 
dary-value problem in the form of expansions over the powers of R: 

= + + . . . ) ,  v _  = . . . ) ,  
~+~ = ~ (~(o) + R~<~) + . . . ) .  ( 1 . 2 )  

The expansions for the pressures begin from terms exhibiting orders of p+ - p+v~ 2, 
p_ - p_v_ 2 - p_R2v~ 2. Having substituted these expansions into the Navier-Stokes equations 
and into the boundary conditions, we will find the equations and the boundary conditions 
for v+ (i), p+(i) (i = 0, 1 .... ). For v+ (~ p+(0) we obtain the boundary-value problem 
for the streamlining of a solid under a condition of adhesion (the dimensionless tangential 
stress ~(0) at the boundary is found from its solution), and for v(] ) we obtain the problem 
of the flow of a viscous fluid within a volume V with the following condition for the dimen- 
sionless tangential stress at the closed surface of the stream 8V [i]: 
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_ _ _ t * 0 )  V V ( O  ( ~ r  u  = _ Vp(O 4- R-7- av  . . . .  0, ( 1 . 3 )  

OV: 2ei;ni~j = ~(0), v(l_)~ = 0, Re_ : lv~R/v_ 

(e.., n i, and T. are the components of the strain-rate tensor, as well as of the unit vectors 13 J _ 
normal and tangential to the surface 8V. Here, the subscripts ij are understood to refer 
to summation.) The potential mass forces in Eqs. (1.3) have been included in the modified 
pressure p_(1). 

2. Structure of the Solution for the Internal Boundary-Value Problem in First Approxi- 
mation. The solution of the problem of steady-state drop motion, where the shape of the 
drop is known, is determined in the general case by three dimensionless parameters Re+, 
Re_, and R. The solution of the first-approximation boundary-value problem (1.3) depends 
on Re+ and Re_ [i], with Re+ representing the only significant parameter, because it deter- 
mines the distribution of T(~ at the surface of the drop. This fact is ascertained on 
the basis of bilateral estimates for the energy dissipation D within the drop [2]. Accor- 
ding to (1.2), the velocity field within the drop is proportional to R, from which we have 
D = ~_v~2R2s Re_). The dimensionless dissipation function d is expressed in terms 
of the strain-rate tensor eij(1) for the velocity V_( 1 ) field 

,. ~ (1) (~) dS,  (2 .  i) d : z .] e~ i eii dV = ~ T(~ 1) 
V 0 V  

where the second equation represents the energy dissipation equation for the work of the 
surface forces, and it is valid for any steady-state flow of a viscous liquid. 

The following bilateral estimates from [2] are valid for the energy dissipation: 

d(Re+, oo) ~< d(Re+, Re_) <~ d(Re+, 0). 

The first follows from the Lagrange principle, according to which the functional 

( 2 . 2 )  

I (v (1)) ---- ~ ei)(1)ei i(1) d V - -  [ ~(~ dS,  
V OV 

determined in the solenoidal velocity field satisfying boundary conditions (1.3), attains 
its minimum value in the solution of the Stokes equations, where the nonlinear inertial 
forces are negligibly small. If the upper bound of (2.2) is valid for any solution of boun- 
dary-value problem (1.3), the lower bound is valid in the assumption that the function d 
is monotonically dependent on R_. The estimation functions for the rather simple regions 
are found analytically, from solutions of the linear problems. 

For a spherical droplet (the case of a small Weber number We) the bilateral estimates 
are written out in explicit form. For this we will present T (~ in the form of a series 
over associated Legendre polynomials: 

~(0) (Re+, 0) = ~ a,~Pn(cos 0) ( 2 . 3 )  
n = l  

(9 i s  t h e  p o l a r  a n g l e  r e c k o n e d  f rom t h e  t r a i l i n g  p o i n t  on t h e  s p h e r e ) .  

For  0 .05  g Re+ ~ 20 t h e  c o e f f i c i e n t s  a n a r e  g i v e n  in  [ 3 ] ,  where  t h e  p rob lem o f  t h e  
s t r e a m l i n i n g  o f  a s p h e r e  has  been  s o l v e d  by t h e  G a l e r k i n  method .  With s m a l l  Re+, a n a r e  
found  from t h e  a s y m p t o t i c  s o l u t i o n  o f  t h e  p ro b l em  o f  s p h e r e  s t r e a m l i n i n g  when Re+ << l .  

In  [6 -5 ]  we f i n d  r e s u l t s  f rom n u m e r i c a l  c a l c u l a t i o n s  f o r  t h e  c a s e s  in  which  Re+ = 50,  
150, and 500 and e x p e r i m e n t a l  d a t a  f o r  t h e  f u n c t i o n  T ( ~  when Re+ = 7 8 , 6 0 0 ,  which  makes 
i t  p o s s i b l e  t o  c a l c u l a t e  a n  a t  t h e s e  Re+. 

The s t r e a m  f u n c t i o n  $0 o f  t h e  l i m i t  s o l u t i o n  f o r  b o u n d a r y - v a l u e  p ro b l em  ( 1 . 3 )  as  
Re_ + 0 and its corresponding energy dissipation are represented as the series 

rn+l __ r~+3 
% = " 4,, + 2 a,~ sin OP~P (cos 0),  ( 2 . 4 )  

TL~ 1 
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= 4~ ~z_~ n ( n +  t) 2 d(Re+, O) 
n=l (2n + t) 2 a,,. 

The stream function ~ of the limit flow as Re_ ~ ~, found in [i], coincides with the first 
term in series (2.4): 

~= = (l/6)(r z - -  r4)a~ sin 2 O, d(Re§ co) = (8/9)na~. ( 2 . 5 )  

The l i m i t  f l ow ( 2 . 5 )  has  a c o n s t a n t  d i m e n s i o n l e s s  r o t a t i o n  i n t e n s i t y  w i t h i n  t h e  s p h e r e  

] rot v~) I 5 5 ~ (2.6) 
C= r s i n ~  = -3 al = T ,J ~(0) s i n  2 O dO. 

0 

This  r e s u l t  was o b t a i n e d  in  [1] f rom t h e  second  o f  t h e  e q u a t i o n s  in  ( 2 . 1 ) ,  which  may be 
r e g a r d e d  as t h e  d e c i s i v e  r e l a t i o n s h i p  f o r  t h e  c o n s t a n t  C. 

F i g u r e  1 shows t h e  f u n c t i o n  C(Re+) in  l o g a r i t h m i c  s c a l e  f o r  Re+ in  t h e  r a n g e  1 ~ Re+ 
1000. The d o t  i d e n t i f i e s  t h e  c a l c u l a t i o n s  c a r r i e d  ou t  w i t h  t h e  a i d  o f  f o r m u l a s  ( 2 . 6 ) ,  in  
which t h e  d a t a  f o r  a l  and z ( ~  (Re+, @) have  been t a k e n  f rom [ 3 - 6 ] .  For  s m a l l  v a l u e s  o f  
Re+ ~ 1 t h e  f u n c t i o n  C(Re+) can be c a l c u l a t e d  by means o f  t h e  a s y m p t o t i c  e x p r e s s i o n  C(Re+) = 
(512)(1 + ( 3 / 8 ) R e + ) / I / R - f [ .  

Figure 2 shows the upper d(Re+, 0) and lower d(Re+, ~) bounds for the energy dissipa- 
tion within the drop. Points I represent calculations on the basis of (2.4) and (2.5), 
carried out with the coefficients of the tangential-stress expansion [3-6], points 2 repre- 
sent the values of d(Re+, Re_) for Re+ = 15, Re_ = 16.1; Re+ = 50, Re_ = 97.9; Re+ = 150, 
Re_ = 509, determined from the results of the numerical calculations, as taken from [4]. 
The deviation of these values from the asymptote d(Re+, ~) does not exceed 9% and is compar- 
able to the error in the numerical calculations [4], obtained with a difference scheme for 
the Navier-Stokes equations. 

When Re_ changes from zero to infinity, the function d(Re+, Re_) varies within small 
limits which are determined by the estimates d(Re+, 0) and d(Re+, ~). The change in d 
amounts to 40% (the highest) when Re+ = 150, 30% when Re+ = 50, about 10% when Re+ = i0, 
and less than 1% when Re+ = i. 

Analysis of the isolines of the stream functions (2.4) for various Re+ shows that when 
Re+ = 150 a second vortex arises within the droplet in the vicinity of the trailing point. 
When Re+ = 150 the maximum velocity in the area of the second vortex is smaller by a factor 
of 30 than the greatest velocity within the droplet. Even with extremely large Re_ the 
Reynolds number calculated on the basis of the characteristic dimension of the second vor- 
tex and the velocity within that vortex will be small. The dividing streamline marking 
the boundary of the second vortex will therefore be independent of Re_. This is confirmed 
by comparison with numerical calculations. The dividing streamline shown in Fig. 3a [4] 
for Re+ = 150 and Re_ = 509 coincides in accuracy with that shown in Fig. 3b for Re+ = 150 
and Re_ = 0. 

The attained simplification of the problem where in the place of three dimensionless 
parameters only one (Re+) is significant is possible only with the following limitation: 
the velocity within the droplet is considerably smaller than v~ or R/5 ~ i. 

3. Equation of the Boundary Layer within the Drop. In accordance with theory [i], 
given a large internal Re_, a "soft" boundary layer of thickness 6_ = I/VRe_ is formed 
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around the edges of the drop. Within this boundary layer we have a change in the values 
of ~_ = Irot v_ I on the order of unity and a small change in v_ on the order of ~_. The 
quantity c_ = w/y (y is the distance from the axis of symmetry) is constant within the drop, 
everywhere outside of the boundary layer (c_ = c = const), and within the boundary layer 
it satisfies the equation of convective diffusion at the limit velocity field Vc(IrOtVcl = 
cy). 

In  w r i t i n g  t h e  e q u a t i o n s  o f  t h e  bounda ry  l a y e r  we w i l l  t a k e  i n t o  c o n s i d e r a t i o n  t h a t  
t h e  d e r i v a t i v e  w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e  x z a c r o s s  t h e  bounda ry  l a y e r  i s  l a r g e r  by 
a f a c t o r  o f / ~ _  t h a n  t h e  d e r i v a t i v e  w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e  s a l o n g  t h e  s t r e a m l i n e .  
Thus, 

Oc_ ~_ a2c_ 
- -  = ~ Ox~ (3.1) as hl 

(h 1 i s  t h e  Lam6 c o e f f i c i e n t  c o r r e s p o n d i n g  t o  t h e  c o o r d i n a t e  x l ) .  For  t h e  c o o r d i n a t e  x z 
it is convenient to take the stream function ~0 of the velocity field v 0 = Vc/C, so that 
h I = i/(yv0), while (3.1) is transformed to an equation of the heat-conduction type 

ac_/at  = a~c_/OxL dt = y2(s)uo(s)ds, x = 4o ]/c~v_,  ( 3 . 2 )  

where y ( s )  r e p r e s e n t s  t h e  d i s t a n c e  f rom t h e  p o i n t  a t  t h e  edge o f  t h e  d rop  t o  t h e  a x i s  o f  
symmetry;  v 0 ( s )  i s  t h e  v a l u e  o f  t h e  v e l o c i t y  v 0 a t  t h i s  same p o i n t  on t h e  bounda ry .  

The bounda ry  s t r e a m l i n e  L i s  d i v i d e d  by t h e  p o l e s  h and B i n t o  segments  L z and L 2. 
For the first segment in contact with the outside we have specified o~ which we will ex- 
press in terms of the magnitude of the vortex, the velocity, and the curvature K of the 
boundary streamline: 

~ = F _ ( y c _  - -  2 K v _ ) .  (3.3) 

From (3.3) we will represent c_ in terms of the stress o+T at the edge of the drop, from 
which we obtain the condition imposed on L l 

c_ (t, O) ~- (2Kvc + (~+~/~t_)/y, 
B 

O ~ t ~ t  o , t o =  yy2v ods. ( 3 . 4 )  
A 

In the boundary layer in contact with the segment L 2 of the axis of drop rotation, 
c_ is carried along the streamline without change, and this leads us to the condition of 
equality for the functions c_ at the poles A and B 

c_ (0, x) = ,c_ (to, x).  ( 3 . 5 )  

O u t s i d e  o f  t h e  b o u n d a r y  l a y e r  c_ must  t e n d  t o  t h e  c o n s t a n t  c and f rom t h i s  we have  

c _ - + c  as x-+ oo. (3.6) 

The boundary-value problem (3.2)-(3.6) has only a single solution. If we predetermine 
c_(t, x) outside of the segment t �9 [0, t o ] from the periodicity condition c_(t + to, x) = 
c_(t, x), we will wind up with the classical problem of the temperature oscillations of 
a semiinfinite rod, a problem that is solved by the Fourier method. In this case c is the 
zero Fourier harmonic for c_(t, 0), determined from (3.4): 
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,iS c = c_ (t, O) dt. 
o 

(3.7) 

It is not difficult to demonstrate that relationship (3.7), with consideration of (3.4), 
is equivalent to equality between the dissipation of energy at the limit velocity field 
v c = cv 0 and the work performed by the force of the tangential stress o+~ at the surface 
of the drop and that it is written, in this case, as 

c2Do = S (I+Tv~dS ( 3 . 8 )  
OV 

(c2D0 represents the dissipation of energy at the limit velocity field v c = cv0). 

Relationship (3.8), from which we find the constants c, has been derived in [i], and 
it is conveniently represented in the form 

2~ ~ (l + ~dt 
c =  D-~o J ,  J :  "y(t) " 

o 

(3.9) 

For an ellipsoidal drop 

8~ X2/3(t6_ 2%2+ %4) 
D~ =q~-15 (4+ ~2)2 , to =~515% 2/~ (3.10) 

(X is the ratio of the axis perpendicular to the flow to the axis of the ellipsoid parallel 
to the flow). In order to solve the entire problem we have only to determine the integral J. 

4. Calculating the Intensity of the Vortex within the Ellipsoidal Drop. We will assume 
the shape of the drop to be ellipsoidal. This is not an overly rough assumption. In a 
number of experimental studies the drops exhibited ellipsoidal shape until extremely high 
strains were attained, and this over a broad range of initial parameters [7-9]. The ellip- 
soidality assumption has been tested in theoretical studies devoted to calculation of buoyant 
bubbles and falling droplets. 

To simplify the calculations for J in (3.9) we will assume that the functions beneath 
the integral sign depend on the single linear parameter represented by the curvature radius 
a = s215 at the pole of the ellipsoid. Indeed, the relationship between a+~/y and t is 
at its maximum at the pole and in the vicinity of t = 0 makes the principal contribution 
to J, so that the second linear parameter of the ellipsoid is less significant and we can 
neglect dependence on this factor. These considerations allow us to draw a conclusion as 
to the form of the function under the integral sign: 

~ Z ~ T (t', Re,) ,  t ' =  t y = T 7 ~  ~ , R e .  = a v ~ l v + ,  ~ = ~ +  (v~la)  1 ~ R e , .  ( 4 . 1 )  

Having substituted (4.1) into (3.9), we obtain 

I 

5 J ~ T ( t ' ,  Re, )d t '~  ( 4 . 2 )  l / ~  cz 2 3R (4 + %2)2 c (Re,) C (Re,)  : -3- 
= , -E = 5z 2 ( t 6 -  2 ~ 2 +  z ~) ' 

o 

The function C(Re,) is independent of the drop deformation. For a spherical drop formulas 
(2.6) and (4.2) are identical for C(Re,). Thus, the parameter ~ in (4.2) for a deformed 
drop is expressed in terms of the function C(Re) shown in Fig. i, which we know in advance. 

As we can see from (4.2), with a constant Re the relationship between S and the deforma- 
tion X is quite significant. Thus, in the change of the deformation from X = 1 to X = 2 

changes by a factor of almost 9. 

The dimensionless parameter (p_/p+)g is the ratio of the characteristic dynamic pressures 
inside and outside of the drop. In the place of the dimensionless We the parameter (p_/p+)~ 
determines the deformation of the drop. Thus, based on the deformation of the drop it is 
possible to make a judgement about (p_/p+)~, and with the aid of (4.2) to find C(Re,). 
The proposed method is one of the possible means of determining the internal intensity of 
the vortex directly through experimentation. 
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5. Calculation of the Vortex within the Drop on the Basis of Deformation. Let us 
examine the problem of determining the shape of a drop falling in a gas under the action 
of the force of gravity. We will make use in this case of that boundary condition for nor- 
mal stresses that has not been taken into consideration up to this point. With Re+ m i 
the normal stresses are close to the pressures p+ and p_ corresponding to the limit flows 
of inviscid liquids. In this case the external flow, generally speaking, is a detached 
flow. We will write this boundary condition as follows: 

p_ --p+ = 2• (5.1) 

(< is the coefficient of surface tension and H represents the mean surface curvature). 

It is well known from experimental data on falling raindrops that these drops have 
a shape similar to a compressed ellipsoid of revolution [8, 9]. Below we propose the Galer- 
kin projection method in combination with a variation method from [i0]. The pressure out- 
side and inside the drop are presented in the form 

+ (i/2)p_viee~ p .  = ( t /2)p+v~c v -- p+gz, p_ = -- p_gz, (5 2) 

H = h/ l ,  x H  = p+ v i h / W e ,  

where Cp + and Cp- are the dimensionless pressures; p+gz and p_gz are the hydrostatic pres- 
sures 05tside and inside the drop; z is a coordinate directed vertically upward; We is the 
Weber number (We = p+v~2s 

In order to find the deformation of the ellipsoid we will take three functions, i.e., 
the Legendre polynomials Po, Pz, and P2, orthogonal at the ellipsoid. We will project the 
boundary condition (5.1) onto these functions. Projection onto Po determines the unknown 
constant in the pressure difference p_ - p+. Projection onto PI, i.e., the equation of 
balance for the force of drop resistance and the force of gravity, makes it possible to 
find the velocity v~ of the falling drop. Projection onto P2, i.e., the equation of drop 
deformation, is given by 

__ 4 (h,P~)=0. (5 3) P -  - ( 4 ,  - 
P+ 

The hydrostatic pressure in Eq. (5.3) adds nothing, since its projection onto P2 is equal 
to zero. The projections in (5.3) are expressed in terms of the derivatives of the dimen- 
sionless functions of the kinetic energies outside of and within the drop, i.e., m(x), i(x), 
as well as of the surface area of the ellipsoid s(x): 

~p-,  P~) = ~'(x), (cp ~, P~) = ~'(x) ,  (h, p~) = - ( ~ / ~ s ' ( x ) .  ( 5 . 4 )  

The form of  m, i ,  and s has been found a n a l y t i c a l l y  in  [12] .  Thus, from ( 5 . 3 )  and ( 5 . 4 )  
we obtain the equation which establishes the relationship between the three parameters: 

I ( ~  = --m'(X) + (p-/p§ + s'(x)/W e = 0 ( 5 . 5 )  

(the primes here and below indicate derivatives with respect to X). In the particular case 
(fl = 0) from (5.5) we have the function We(x) [i0, ii]. We will assume the experimentally 
derived deformation X and We to be known, so that from (5.5) we determined ~, while with 
the aid of (4.2) we can find C2(Re). 

Table 1 shows the dimensionless C for large Re+, calculated form (4.2) and (5.5). 
The data for s v~, and X have been taken from [8, 9, 13] for drops falling in air under 
normal conditions (K = 72.8 dyn/cm, p+ = 0.0012 g/cm ~, v+ = 0.15 cm2/sec, p- = i g/cm 3, 
~_ = 0.01 cm2/sec). We can see that C varies about a value of 0.6, which is in agreement 
with the values established theoretically in [i] (C ~ 0.7 as Re+ § ~) (see Fig. I). 

6. Stability of the Steady-State Motion of the Drops. We can undertake a study of 
drop deformation, where the drop is moving in the flow of an ideal incompressible liquid, 
with the aid of the Lagrange equations. An expression is given in [I0] for the Lagrange 
functions L(u, • ~) for the dynamic model of an ellipsoidal drop exhibiting two degrees 
of freedom: the coordinate determining the translational motion x 0, x0 = u; and the coor- 
dinate X which determines the deformation of the drop. 

The equation for the deformation of the drop is given by 

a aL ~ !  = O. ( 6 . 1 )  
dt OX aX 
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TABLE 1 

l, mm %o, era/ % Re+ We C Olla)~ al~16~ Source 
sec 

0,7 5i7 1,060 24i 0,308 0,6tl -- -- [i3] 

1,0 649 i,i04 433 0,694 0,595 - -  -- (~ 

i,5 806 t,185 806 1,62 0,553 0,39i t,31 (< 

2,0 874 t,279 1t80 2,31 0,529 --0,327 0,533 (~ 

2,5 909 1,389 i515 3,44 0,565 --0,433 0,353 (( 

2,9 917 t,492 t770 4,06 0,609 --0,502 0,241 (( 

3,0 9i8 1,53 t800 4,t2 0,636 --0,488 0,237 [8] 

3,5 9i8 t,6i 2i44 4,82 0 ,67  --0,603 0,088 << 

4,0 919 t,72 2450 5,5t 0,75 --0,706 --0,057 (( 

This equation is enhanced in [i0] by the law of the conservation of momentum: 8L/Su = const. 
In view of the fact that for liquid drops moving in a gas the density p_ exceeds the density 
p+ of the gas by an order of three, it follows from this law that the velocity of the drop 
is constant. Equation (5.5) has been derived in [i0] for the deformation of the drop in 
steady-state motion, while for the stability of the steady-state motion we have the condition 

~/a%>O. ( 6 . 2 )  

We can see from the corresponding values in Table 1 that from condition (6.2) the water 
droplets falling in air lose stability when ~ e 1.88 mm, i.e., considerably earlier than 
in the experiments [8, 13]. The cause of the diversion from experiment lies in the fact 
that with a change in the deformation of the drop the viscous resistance and the velocity 
of the falling droplet also change. 

In order to take this effect into consideration we will assume that the resistance 
law with the drag factor c x = 0.365X 1"s is quadratic with respect to velocity. Hence we 
have the relationship between the velocity of the falling drop and deformation: 

(8 p \II~ ( ~)11s 
u = u ( % ) =  -~-e gl'p~) =2,7%-o,s gl (6.3) 

The empirical relationship (6.3) is in good agreement with the experimental data [8, 13] 
(see Table i). 

The following condition of stability follows from the system of equations (6.1), (6.3): 

(6.4) 

where 

B a s e d  on c r i t e r i o n  ( 6 . 4 )  t h e  l o s s  o f  s t a b i l i t y  o c c u r s  a t  d r o p  d e f o r m a t i o n s  l a r g e r  t h a n  
on t h e  b a s i s  o f  ( 6 . 2 ) .  T h i s  i s  e x p l a i n e d  by  t h e  f a c t  t h a t  u n d e r  t h e  c o n d i t i o n  o f  c o n s t a n c y  
for the drop velocity the increase in drop deformation leads to an increase in the external 
dynamic pressure at the equator. Indeed, with an increase in drop deformation the velocity 
at which falls is reduced in accordance with (6.3) and the dynamic pressure will be lower 
than in the case of a constant velocity of fall. 

The deformation of falling raindrops has been studied all the way to ~ = 4 mm in the 
experiments described in [13], whose results are presented in Table 1 (~ ~ 2.9 mm) and 2 
(~ e 3 mm). As we can see from Table l, condition (6.4) in conjunction with (6.3) is satis- 
fied for drops of all sizes with the exception of ~ = 4 mm. It has been established experi- 
mentally [13] that even drops with dimensions of ~ = 4 mm are unstable and break up into 
smaller droplets. 
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Thus, taking into consideration the relationship between the velocity of the drop and 
its deformation is of considerable importance in describing the vibrations of the drops 
and in studying the stability of steady drop shape. 
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